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Abstract—Surrogate modeling is gaining more and more
ground in various engineering domains. The use of computa-
tionally cheap surrogate models in electromagnetic nondestruc-
tive evaluation –where usually heavy numerical simulators are
involved– has already shown and still promises considerable im-
provement over traditional approaches for specific applications.
The purpose of this paper is to propose an (limited) overview
of such an approach in the framework of electromagnetic
nondestructive evaluation. Adaptive sampling methods for the
solution of inverse problems and for the generation of “opti-
mal”, interpolation-based surrogate models are presented and
illustrated by examples drawn from eddy-current nondestructive
testing.

Index Terms—Surrogate modeling; Nondestructive evaluation;
Eddy-current testing; Kriging

I. Introduction

Electromagnetic nondestructive evaluation (ENDE) is
widely used in industry to reveal and characterize in-material
defects. The solution of the inverse problem (i.e., determin-
ing the properties of the defect based on the knowledge
of some measured data) is of main interest, however, it is
still a challenging issue. Besides the theoretical pitfallof
possibly being ill-posed, inverse problems raise computational
difficulties as well, since inversion is often performed via
solutions of direct problems. Even if sophisticated numerical
simulators providing fine precision are available in ENDE
(e.g., finite element or integral equation schemes) their related
computational burden is high.

In this paper, kriging-assisted surrogate modeling ap-
proaches are presented. Kriging is a tool for function ap-
proximation (see, e.g., the textbook [1]): based on some
observations, an unknown function can be predicted at unob-
served locations within a stochastic framework (via a Gaussian
random process model). Besides the prediction, its estimated
uncertainty is also provided. In electromagnetics, kriging has
already shown good performance (e.g., [2], [3], [4] as ex-
amples for single objective optimization or [5] as a recent
approach for multiobjective optimization).

II. The studied simple ECT setup

The approaches are illustrated by a 2-parameter eddy-
current testing (ECT) example. A homogeneous, non-magnetic
conductive plate is affected by a thin, rectangular-shaped
crack. An air-cored pancake type coil driven by time-harmonic
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Figure 1: Cross-section of the studied ECT configuration. The
depthD is given in percentages of the plate thicknessd.

current scans above the plate (Fig. 1). The variation of the
coil impedance∆Z(t) is measured (t is the coil position over
a rectangular surface). The position and the orientation ofthe
crack are known, only its lengthL and depthD are enabled
to vary. For the numerical simulation, an integral formalism is
used [6]. The varying crack properties, denoted byx = [L,D],
are called theinput of the simulation and the corresponding
simulated impedance variation is denoted by∆Zx(t).

III. Optimization-based inversion by the EGOalgorithm

We present a way for the solution of the inverse problem,
via the traditional optimization task:

x⋆ = arg minQ(x), whereQ(x) =
||∆Z(t) − ∆Zx(t)||
||∆Z(t)||

. (1)

Since the objective functionQ(x) is “expensive-to-evaluate”
(needing a numerical EM simulation) and might have many
local minima, the so-called “Efficient Global Optimization”
(EGO) algorithm [7] has been applied. Also the authors of
the present paper have dealt with the EGO algorithm in the
context of ECT inverse problems [8].

The main idea of EGO is to construct the cheap surrogate
model of the objective function by kriging. Based on this
prediction, along with its estimated uncertainty, a sequential
sampling method is built up:Q(x) is being evaluated step-by-
step always at the most “promising” pointx in an iterative
loop. The way to choose the next point is a compromise
between a local and a global search over the input domain.
The performance of EGO in our example is shown (Fig. 2).
After 10 initial observations (by a Latin Hypercube Sampling)
and 10 more iterations the global minimizer ofQ(x) is found.
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Figure 2: Performance of the EGO algorithm: samples are
shown over the input domain. Triangles: initial samples; dots:
adaptively added samples, number of iteration is in brackets
followed by the actual value ofQ. (The “measured data” –
related to aL = 8.5 mm, D = 20 % crack– is computed by the
numerical simulator).

IV. Adaptive databases as surrogate models

Whereas the EGO concentrates the observations into certain
“promising” regions of the input domain (according to the
specific inverse problem to be solved), one can perform a sam-
pling also to achieve a general surrogate model to interpolate
the output signal∆Zx(t) based on samples stored in a database.
However, the precision of the yielded surrogate model depends
not only on the interpolator but also on the choice of the
samples. Such adaptive sampling strategies, aiming to reduce
the interpolation errorε(x) =

∣∣∣∣
∣∣∣∣∆Zx(t) − ∆̂Zx(t)

∣∣∣∣
∣∣∣∣ (where∆̂Zx(t)

is given by the surrogate model) are then proposed.
When the nearest neighbor rule is used as an interpolator,

the sampling must be uniform in the domain of impedance
signals. A kriging-based sampling strategy has been developed
to generate such adaptive databases. It is presented in detail in
[9], along with further applications (e.g., the structure of these
databases provides meta-information on the studied problem).
Only the performance of the approach is illustrated herein via
the 2-parameter ECT example (Fig. 3).

More precise surrogate models can be constructed by using
more sophisticated interpolators. The authors presented the
use of a functional kriging interpolator [10]. In so doing,
even a naive sampling provides fine approximations, however,
sample-sets can also be generated adaptively based on the
estimated uncertainty of the functional kriging prediction.

V. Conclusion

In some applications surrogate models seem to be promis-
ing alternatives for time-consuming numerical simulations in
nondestructive evaluation. All above mentioned approaches are
outlined in more detail and illustrated by more complex ECT
examples (involving up to 6 parameters) in the full version of
the paper.
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Figure 3: Interpolation errorε(x) normalized by the norm of
the signal of aL = 8.5 mm, D = 20 % crack (colormap).
Top: naive sample distribution. Bottom: result of our adaptive
sampling (more samples are concentrated in the regions where
the problem is more sensitive to the input parameters, this is
why the error is smaller in this case).
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